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Abstract This paper is a continuum of the preceding paper of author. By applying
a coincidence theorem in noncompact FC-space without any convexity structure due
to author, a new KKM type theorem is first proved under noncompact setting of FC-
spaces. The equivalent relation between the coincidence theorem and the KKM type
theorem is also established. As applications of the KKM type theorem, we establish
some new existence theorems of solutions for three classes of generalized vector equi-
librium problems under noncompact setting of FC-spaces. These theorems improve
and generalize many known results in literature.

Keywords Coincidence theorem · KKM type theorem · Generalized vector
equilibrium problem · Transfer compactly open-valued (closed-valued) mapping ·
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1 Introduction

In 1980, Giannessi [16] first introduced the vector variational inequality problem in
finite dimensional Euclidean spaces. Since then, such problem has been extended and
generalized by many authors in various different directions. Motivation for this comes
from the fact that vector variational inequality and its various generalizations have
extensive and important applications in vector optimization, optimal control, math-
ematical programing, operations research, and equilibrium problem of economics.
Inspired and motivated by above applications, various generalized vector variational
inequality problems, generalized vector equilibrium problems have become impor-
tant developed directions of vector variational inequality theory, (for example, see
[2, 5–7, 9, 14, 15, 17, 19, 21–27]).
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Let X, Y be topological spaces, Z be a nonempty set and 2Z be the family of all
subsets of Z. Let F : X × Y → 2Z and C : X → 2Z be set-valued mappings.

A generalized vector equilibrium problem of type (I) (GVEP(I)) is to find x̂ ∈ X
such that

F(x̂, y) ⊂ C(x̂), ∀ y ∈ Y.

A generalized vector equilibrium problem of type (II) (GVEP(II)) is to find x̂ ∈ X
such that

F(x̂, y) �⊂ C(x̂), ∀ y ∈ Y.

A generalized vector equilibrium problem of type (III) (GVEP(III)) is to find
x̂ ∈ X such that

F(x̂, y)
⋂

C(x̂) �= ∅, ∀ y ∈ Y.

For appropriate choices of the spaces X, Y, Z, and the mappings F and C, it is easy
to see that the GVEP(I) – GVEP(III) include most extensions and generalizations of
generalized vector equilibrium problems and generalized vector variational inequal-
ity problems as very special cases (for example, see [2, 5–7, 9, 14, 15, 17, 19, 21–27]
and the references therein).

Recently Lin et al. [21], Lin and Chen [22], and Lin and Wang [23] further study
the class KKM(X, Y) of set-valued mappings with KKM property in topological vec-
tor spaces. They established some new KKM type theorems, coincidence theorems,
and the equivalent relations between the KKM type theorems and coincidence the-
orems. As applications, some existence theorems of solutions for the GVEP(I) and
GVEP(III) are also proved under suitable assumptions. By using fixed point theorem
and generalized KKM theorem, Ding and Park [14, 15] proved some existence theo-
rems of solutions for the GVEP(II) in G-convex spaces under different assumptions.

In most of known KKM type theorems and coincidence theorems, the convexity
assumptions play a crucial role which strictly restricts the applicable area of these
KKM type theorems and coincidence theorems. In [13], we have generalized the
KKM type theorems and coincidence theorems of [21] from topological vector spaces
to FC-spaces without any convexity structure under much weak assumptions.

In this paper, by applying our coincidence theorem in [13], an KKM type theorem is
first proved under noncompact setting of FC-spaces without any convexity structure.
The equivalent relation between the coincidence theorem and the KKM type theo-
rem is also established. As applications of the KKM type theorem, we establish some
new existence theorems of solutions for the GVEP(I)–GVEP(III) under noncompact
setting of FC-spaces. These theorems improve and generalize many known results in
literature.

2 Preliminaries

Let �n be the standard n-dimensional simplex with vertices e0, e1, . . . , en. If J is a
nonempty subset of {0, 1, . . . , n}, we denote by �J the convex hull of the vertices
{ej : j ∈ J}. For topological space X, a subset A of X is said to be compactly open
(resp., compactly closed) if for each nonempty compact subset K of X, A ∩ K is open
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(resp., closed) in K. The compact closure and the compact interior of A (see [10]) are
defined by

ccl(A) =
⋂

{B ⊂ X : A ⊂ B and B is compactly closed in X},
cint(A) =

⋃
{B ⊂ X : B ⊂ A and B is compactly open in X}.

It is easy to see that for each nonempty compact subset K of X, we have ccl(A)∩ K =
clK(A ∩ K), cint(A) ∩ K = intK(A ∩ K) and ccl(X \A) = X \cint(A). A subset A
of X is compactly open (resp., compactly closed) if and only if cint(A) = A (resp.,
ccl(A) = A).

Let X and Y be topological spaces. A set-valued mapping T : X → 2Y is said
to be transfer compactly open-valued (resp., transfer compactly closed-valued) on
X (see [10]) if for each x ∈ X, each nonempty compact subset K of Y and each
y ∈ K, y ∈ T(x) ∩ K (resp., y /∈ T(x) ∩ K) implies that there exists x′ ∈ X such that
y ∈ infK(T(x′)∩ K) (resp., y /∈ clK(T(x′)∩ K)). We observe that the notion of transfer
compact-open (resp. transfer compact-closed) mappings defined by Lin and Ansari
in [20, p 409] is a special cases of the above corresponding notion.

The following notion was introduced by Ding [12].

Definition 2.1 (Y, ϕN) is said to be a finitely continuous space (in short, FC-space) if Y
is a topological space and for each N = {y0, . . . , yn} ∈ 〈Y〉 where some elements may
be same, there exists a continuous mapping ϕN : �n → Y. If A and B are two subsets
of Y, B is said to be a FC-subspace of Y relative to A if for each N = {y0, . . . , yn} ∈ 〈Y〉
and for any {yi0 . . . , yik} ⊂ A ∩ {y0, . . . , yn}, ϕN(�k) ⊂ B where �k = co({ei0 , . . . , eik}).
If A = B, then B is called a FC-subspace of Y.

It is easy to see that the class of FC-spaces includes the classes of convex sets
in topological vector spaces, C-spaces (or H-spaces) [18], G-convex spaces [28], L-
convex spaces [4], and many topological spaces with abstract convexity structure as
true subclasses. Hence, it is quite reasonable and valuable to study various nonlinear
problems in FC-spaces.

Definition 2.2 Let (Y, ϕN) be a FC-space and X be a topological space. Let T, F :
Y → 2X be two set-valued mappings. F is said to be a generalized KKM mapping
with respect to T if for each N = {y0, . . . , yn} ∈ 〈Y〉 and each {yi0 , . . . , yik} ⊂ N,
T(ϕN(�k)) ⊂ ⋃k

j=0 F(yij) where �k = co({ei0 , . . . , eik}). T is said to have the KKM

property if for each generalized KKM mapping F with respect to T, the family {F(y) :
y ∈ Y} has the finite intersection property. Write

KKM(Y, X) = {T : Y → 2X : T has the KKM property}.

Clearly, the new class KKM(Y, X) generalizes the classes KKM(Y, X) in [8, 21]
from convex subsets of topological vector spaces to FC-spaces.

Lemma 2.1 [1] Let X and Y be topological spaces and G : X → 2Y be a set-valued
mapping. Then G is lower semicontinuous in x ∈ X if and only if for any y ∈ G(x)

and any net {xα} ⊂ X satisfying xα → x, there exists a net {yα} such that yα ∈ G(xα)

and yα → y.
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3 Some equivalent coincidence theorems and KKM type theorems

The following result is Theorem 4.4 of our preceding paper [13].

Theorem 3.1 Let (Y, {ϕN}) be a FC-space and X be a topological space. Let T ∈
KKM(Y, X) and H, P, Q : X → 2Y be set-valued mappings such that

(1) Q−1 is transfer compactly open-valued and for each x ∈ X, Q(x) �= ∅,
(2) for each x ∈ X, Q(x) ⊂ H(x),
(3) for each x ∈ X, P(x) is a FC-subspace of Y relative to H(x).
(4) for each compact subset D of Y, T(D) is compact in X,
(5) there exist a compact subset K of X such that for each N ∈ 〈Y〉, there is a compact

FC-subspace LN of Y containing N satisfying

T(LN)\K ⊂
⋃

y∈LN

cintQ−1(y).

Then there exists (y0, x0) ∈ Y × X such that x0 ∈ T(y0) and y0 ∈ P(x0).

Corollary 3.1 Let (Y, {ϕN}) be a FC-space and X be a topological space. Let T ∈
KKM(Y, X) and Q : X → 2Y be set-valued mappings such that

(1) Q−1 is transfer compactly open-valued and for each x ∈ X, Q(x) �= ∅,
(2) for each x ∈ X, Q(x) is a FC-subspace of Y.
(3) for each compact subset D of Y, T(D) is compact in X,
(4) there exist a compact subset K of X such that for each N ∈ 〈Y〉, there is a compact

FC-subspace LN of Y containing N satisfying

T(LN)\K ⊂
⋃

y∈LN

cintQ−1(y).

Then there exists (y0, x0) ∈ Y × X such that x0 ∈ T(y0) and y0 ∈ Q(x0).

Proof The conclusion of Corollary 3.1 holds from Theorem 3.1 with Q = H = P.

Remark 3.1 From Lemma 2.1 of Ding [13] it is easy to see that Theorem 3.1 and
Corollary 3.1 generalize Theorem 2.6 of Lin et al. [21], Theorems 3.1 and 3.2 of Lin
and Wan [23] and Theorems 3.5 and 3.7 of Lin and Chen [22] from topological vec-
tor spaces to FC-spaces without any convexity structure under weaker assumptions.
Theorem 3.1 also generalize Theorem 3.4 of Ding [11] from the class Uk

c (Y, X) to the
class KKM(Y, X) and from L-convex spaces to FC-spaces.

The following KKM type theorem is an equivalent statement of Theorem 3.1.

Theorem 3.2 Let (Y, {ϕN}) be a FC-space and X be a topological space. Let T ∈
KKM(Y, X) and F, G, M : Y → 2X be set-valued mappings such that

(1) F has transfer compactly closed values,
(2) for each y ∈ Y, G(y) ⊂ F(y) and T(y) ⊂ M(y),
(3) G is a generalized KKM mapping with respect to M.
(4) for each compact subset D of Y, T(D) is compact in X,
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(5) there exists a compact subset K of X such that, for each N ∈ 〈Y〉, there exists a
compact FC-subspace LN of Y containing N such that

T(LN)
⋂ ( ⋂

y∈LN

cclF(y)
)

⊂ K.

Then
⋂

y∈Y F(y) �= ∅.

Proof Theorem 3.1 ⇒ Theorem 3.2. Suppose the conclusion of Theorem 3.2 is false,
then ∩y∈YF(y) = ∅. Hence for each x ∈ X, Y\F−1(x) �= ∅. Define set-valued mappings
Q, P, H : X → 2Y by

Q(x) = Y\F−1(x), H(x) = Y\G−1(x) and P(x) = Y\M−1(x), ∀ x ∈ X.

Then for each x ∈ X, Q(x) �= ∅, and for each y ∈ Y,

Q−1(y) = {x ∈ X : y ∈ Q(x)} = {x ∈ X : y /∈ F−1(x)} = {x ∈ X : x /∈ F(y)} = X\F(y).

By (1) and Lemma 2.2 in [13], Q−1 : Y → 2X is transfer compactly open-valued. The
condition (1) of Theorem 3.1 is satisfied. Since G(y) ⊂ F(y) for each y ∈ Y by (2), we
have that Q(x) ⊂ H(x) for each x ∈ X. The condition (2) of Theorem 3.1 is satisfied.
By (3) and Lemma 2.5 in [13], for each x ∈ X, P(x) is a FC-subspace of Y with respect
to H(x). The condition (3) of Theorem 3.1 is satisfied. Since Q−1(y) = X \F(y) for
each y ∈ Y, by (v), we have

T(LN)\K ⊂
⋃

y∈LN

(X\cclF(y)) ⊂
⋃

y∈LN

cint(X\F(y)) =
⋃

y∈LN

cintQ−1(y).

All conditions of Theorem 3.1 are satisfied. By Theorem 3.1 there exists (y0, x0) ∈
Y × X such that x0 ∈ T(y0) and y0 ∈ P(x0). Hence we have y0 /∈ M−1(x0) and so
x0 /∈ M(y0). By (2), x0 /∈ T(y0) which is a contradiction. Hence ∩y∈YF(y) �= ∅.

Theorem 3.2 ⇒ Theorem 3.1. Under the assumptions of Theorem 3.1, if the con-
clusion of Theorem 3.1 is false, then for each y ∈ Y, T(y) ∩ P−1(y) = ∅ which implies
T(y) ⊂ X\P−1(y). Define set-valued mappings F, G, M : Y → 2X by

F(y) = X\Q−1(y), G(y) = X\H−1(y) and M(y) = X\P−1(y), ∀ y ∈ Y.

Hence T(y) ⊂ M(y) for each y ∈ Y. By the condition (1) of Theorem 3.1 and Lemma
2.2 in [13], F has transfer compactly closed values. By condition (2) of Theorem 3.1
and the definition of F and G, we have G(y) ⊂ F(y) for each y ∈ Y. By (3) and Lemma
2.5 in [13], G is a generalized KKM mapping with respect to M. By condition (v) of
Theorem 3.1, we have

T(LN)\
⋃

y∈LN

cintQ−1(y) ⊂ K.

It follows that

T(LN)
⋂( ⋂

y∈LN

cclF(y)
)

= T(LN)
⋂( ⋂

y∈LN

ccl(X\Q−1(y)) = T(LN)\
⋃

y∈LN

cintQ−1(y)
)

⊂ K.

All conditions of Theorem 3.2 are satisfied. By Theorem 3.2, ∩y∈YF(y) �= ∅. Any take
x0 ∈ ∩y∈YF(y), then x0 ∈ F(y) = X\Q−1(y) for all y ∈ Y. Therefore y /∈ Q(x0) for all
y ∈ Y and so Q(x0) = ∅ which contradicts the condition (1) of Theorem 3.1. Hence
the conclusion of Theorem 3.1 holds.
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The following KKM type theorem is an equivalent statement of Corollary 3.1.

Corollary 3.2 Let (Y, {ϕN}) be a FC-space and X be a topological space. Let T ∈
KKM(Y, X) and F : Y → 2X be set-valued mappings such that

(1) F has transfer compactly closed values,
(2) F is a generalized KKM mapping with respect to T.
(3) for each compact subset D of Y, T(D) is compact in X,
(4) there exists a compact subset K of X such that, for each N ∈ 〈Y〉, there exists a

compact FC-subspace LN of Y containing N such that

T(LN)
⋂

(
⋂

y∈LN

cclF(y) ⊂ K.

Then ∩y∈YF(y) �= ∅.

Proof The conclusion of Corollary 3.2 holds from Theorem 3.2 with G = F and
M = T

Remark 3.2 Theorem 3.2 and Corollary 3.2 improve and generalize Theorem 3.3 of
Lin and Wan [23] and Theorem 3.2 of Lin and Chen [22] from topological vector
spaces to FC-spaces without any convexity structure under much weak assumptions.
Theorem 3.2 and Corollary 3.2 also generalize Theorems 3.2 and 3.3 of Ding [11] from
the class Uk

c (Y, X) to the class KKM(Y, X) and from L-convex spaces to FC-spaces.

4 Existence results of generalized vector equilibrium problems

The following notion of properly quasimonotone bimapping was introduced by Bian-
chi and Pini [6] in topological vector spaces.

Definition 4.1 Let (Y, {ϕN}) be a FC-space, X be a topological space and Z be a non-
empty sets. Let T : Y → 2X , F : X × Y → 2Z and C : X → 2Z be set-valued mappings.
F(x, y) is said to be a properly quasimonotone mapping of Type (I) (resp., Types (II)
and (III)) with respect to T on X × Y if the mapping F∗ : Y → 2X defined by

F∗(y) = {x ∈ X : F(x, y) ⊂ C(x))}
(resp., F∗(y) = {x ∈ X : F(x, y) �⊂ C(x)}, F∗(y) = {x ∈ X : F(x, y) ∩ C(x)) �= ∅}s)

is a generalized KKM mapping with respect to T.

Definition 4.2 Let (Y, {ϕN}) be a FC-space, X be a topological space and Z be a non-
empty set. Let T : Y → 2X , F : X × Y → 2Z and C : X → 2Z be set-valued mappings.
F(x, y) is said to be a C-diagonally quasiconvex mapping of Type (I) (resp., Type (II),
Type (III)) with respect to T in second argument if, for each N = {y0, . . . , yn} ∈ 〈Y〉,
each {yi0 , . . . , yik} ⊂ N, and each x ∈ T(ϕN(�N)), there exists j ∈ {0, · · · , k} such that

F(x, yij) ⊂ C(x) (resp., F(x, yij) �⊂ C(x), F(x, yij)
⋂

C(x) �= ∅).

If X = Y and T is the identity mapping, then F(x, y) is said to be a C-diagonally
quasiconvex mapping of Type (I) (resp., Type (II), Type (III)) in second argument.
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Remark 4.1 Definition 4.2 extend the corresponding notions of Hou et al. [19] from
topological vector spaces to FC-spaces under more general setting.

Definition 4.3 Let X and Y be topological spaces and Z be nonempty sets. Let F :
X ×Y → 2Z and C : X → 2Z be set-valued mappings. F(x, y) is said to be a C-transfer
compactly continuous mapping of Type (I) (resp., Type (II), Type (III)) in first argu-
ment if, for any compact subset K of X and any x ∈ K, {y ∈ Y : F(x, y) �⊂ C(x)} �= ∅
(resp., {y ∈ Y : F(x, y) ⊂ C(x)} �= ∅, {y ∈ Y : F(x, y) ∩ C(x) = ∅} �= ∅) implies that
there exist a relatively open neighborhoos N(x) of x in K and a point y′ ∈ Y such that
F(z, y′) �⊂ C(z) (resp., F(z, y′) ⊂ C(z), F(z, y′) ∩ C(z) = ∅ ) for all z ∈ N(x).

Remark 4.2 Definition 4.3 extend the corresponding notion of Ding and Park [15].

Proposition 4.1 Let (Y, {ϕN}) be a FC-space, X be a topological space and Z be a
nonempty set. Let T : Y → 2X, F : X × Y → 2Z, and C : X → 2Z be set-valued
mappings.

Then F(x, y) is a properly quasimonotone mapping of Type (I) (resp., Types (II) and
Type (III)) with respect to T if and only if F(x, y) is a C-diagonally quasiconvex
mapping of Type (I) (resp., Types (II)and (III)) with respect to T in second argument.

Proof Suppose that F(x, y) is a properly quasimonotone mapping of Type (I) (resp.,
Types (II) and (III)) with respect to T, then for each N = {y0, . . . , yn} ∈< Y >, each
{yi0 , . . . , yik} ⊂ N,

T(ϕN(�k)) ⊂
k⋃

j=0

{x ∈ X : F(x, yij) ⊂ C(x)} (4.1)

(resp., T(ϕN(�k)) ⊂
k⋃

j=0

{x ∈ X : F(x, yij) �⊂ C(x)}, (4.2)

T(ϕN(�k)) ⊂
k⋃

j=0

{
x ∈ X : F(x, yij)

⋂
C(x) �= ∅

}
. (4.3)

If F(x, y) is not a C-diagonally quasiconvex mapping of Type (I) (resp., Types (II) and
(III)) with respect to T in second argument, then there exist N = {y0, . . . , yn} ∈ 〈Y〉,
{yi0 , . . . , yik} ⊂ N and x0 ∈ T(ϕN(�k) such that

F(x0, yij) �⊂ C(x0) (resp., F(x0, yij) ⊂ C(x0), F(x0, yij)
⋂

C(x0) = ∅})
for all j = 0, . . . , k. It follows that x0 ∈ T(ϕN(�k)) and x0 /∈ ∪k

j=0{x ∈ X : F(x, yij) ⊂
C(x)} (resp., x0 /∈ ∪k

j=0{x ∈ X : F(x, yij) ⊂ C(x)}, x0 /∈ ∪k
j=0{x ∈ X : F(x, yij) ∩ C(x) �=

∅}) which contradicts (4.1) (resp., (4.2), (4.3)). Now suppose that F(x, y) is a C-diag-
onally quasiconvex mapping of Type (I) (resp., Type (II), Type (III)) with respect to
T in second argument, then for each N = {y0, . . . , yn} ∈ 〈Y〉, each {yi0 , . . . , yik} ⊂ N,
and each x ∈ T(ϕN(�N)), there exists j ∈ {0, . . . , k} such that

F(x, yij) ⊂ C(x) (4.4)

(resp., F(x, yij) �⊂ C(x), (4.5)

F(x, yij)
⋂

C(x) �= ∅. (4.6)
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If F(x, y) is not a properly quasimonotone mapping of Type (I) (resp., Types (II) and
(III)) with respect to T, then there exist N = {y0, . . . , yn} ∈ 〈Y〉, {yi0 , . . . , yik} ⊂ N
such that T(ϕN(�k)) �⊂ ⋃k

j=0{x ∈ X : F(x, yij) ⊂ C(x)} (resp., T(ϕN(�k)) �⊂ ⋃k
j=0{x ∈

X : F(x, yij) �⊂ C(x)}, T(ϕN(�k)) �⊂ ⋃k
j=0{x ∈ X : F(x, yij) ∩ C(x) �= ∅}). Hence there

exists x0 ∈ T(ϕN(�k)) such that

F(x0, yij) �⊂ C(x0) (resp., F(x0, yij) ⊂ C(x0), F(x0, yij)
⋂

C(x0) = ∅}
for all j = 0, . . . , k which contradicts (4.4) (resp., (4.5), (4.6)). This completes the proof.

Proposition 4.2 Let (Y, {ϕN}) be a FC-space, X be a topological space and Z be a
nonempty set. Let T : Y → 2X, F : X × Y → 2Z, and C : X → 2Z be set-valued
mappings. Suppose that for each x ∈ X, Y \T−1(x) is a FC-subspace of Y relative to
{y ∈ Y : F(x, y) �⊂ C(x)} (resp., {y ∈ Y : F(x, y) ⊂ C(x)}, {y ∈ Y : F(x, y) ∩ C(x) = ∅}).
Then F(x, y) is a properly quasimonotone mapping of Type (I) (resp., Types (II) and
(III)) with respect to T.

Proof Define a set-valued mapping F∗ : Y → 2X by

F∗(y) = {x ∈ X : F(x, y) ⊂ C(x)}
(resp., F∗(y) = {x ∈ X : F(x, y) �⊂ C(x)}, F∗(y) = {x ∈ X : F(x, y)

⋂
C(x) �= ∅}).

Then for each x ∈ X, we have

Y\(F∗)−1(x) = {y ∈ Y : F(x, y) �⊂ C(x)}
(resp., Y\(F∗)−1(x) = {y ∈ Y : F(x, y) ⊂ C(x)}, Y\(F∗)−1(x) = {y ∈ Y : F(x, y) ∩ C(x) = ∅}).

By the assumption, for each x ∈ X, Y \T−1(x) is a FC-subspace of Y relative to
Y \(F∗)−1(x). By Lemma 2.5 of Ding [13], F∗ is a generalized KKM mapping with
respect to T. Hence F(x, y) is a properly quasimonotone mapping of Type (I) (resp.,
Types (II) and (III)) with respect to T.

Proposition 4.3 Let (Y, {ϕN}) be a FC-space, X be a topological space and Z be a
nonempty set. Let T : Y → 2X, F : X × Y → 2Z, and C : X → 2Z be set-valued
mappings. Suppose that

(1) for all y ∈ Y and x ∈ T(y), F(x, y) ⊂ C(x) (resp., F(x, y) �⊂ C(x), F(x, y) ∩ C(x) �=
∅),

(2) for each x ∈ X, the set {y ∈ Y : F(x, y) �⊂ C(x)} (resp., {y ∈ Y : F(x, y) ⊂
C(x)}, {y ∈ Y : F(x, y) ∩ C(x) = ∅}) is a FC-subspace of Y.

Then F(x, y) is a properly quasimonotone mapping of Type (I) (resp., Types (II) and
(III)) with respect to T.

Proof Define a set-valued mapping F∗ : Y → 2X by

F∗(y) = {x ∈ X : F(x, y) ⊂ C(x)}
(resp., F∗(y) = {x ∈ X : F(x, y) �⊂ C(x)}, F∗(y) = {x ∈ X : F(x, y) ∩ C(x) �= ∅}).

Then for each x ∈ X, we have

Y\(F∗)−1(x) = {y ∈ Y : F(x, y) �⊂ C(x)}
(resp., Y\(F∗)−1(x) = {y ∈ Y : F(x, y) ⊂ C(x)}, Y\(F∗)−1(x) = {y ∈ Y : F(x, y)

⋂
C(x) = ∅}).
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By (2), for each x ∈ X, we have Y \(F∗)−1(x) = {y ∈ Y : F(x, y) �⊂ C(x)} (resp., Y \
(F∗)−1(x) = {y ∈ Y : F(x, y) ⊂ C(x)}, Y\(F∗)−1(x) = {y ∈ Y : F(x, y) ∩ C(x) = ∅}) is
a FC-subspace of Y. By (2), we have that for each x ∈ X, Y\(F∗)−1(x) ⊂ Y\T−1(x).
Hence for each x ∈ X, Y\T−1(x) is a FC-subspace of Y relative to {y ∈ Y : F(x, y) �⊂
C(x)} (resp., {y ∈ Y : F(x, y) ⊂ C(x)}, {y ∈ Y : F(x, y) ∩ C(x) = ∅} ). By Proposition
4.2, the conclusion of Proposition 4.3 holds.

Remark 4.3 Propositions 4.2 and 4.3 generalize Proposition 4.1 of Lin and Chen [22]
from topological vector spaces to FC-spaces

Proposition 4.4 Let X and Y be topological spaces and Z be a nonempty sets. Let
F : X × Y → 2Z and C : X → 2Z be set-valued mappings. F(x, y) is a C-transfer com-
pactly continuous mapping of Type (I) (resp., Types (II) and (III)) in first argument if
and only if the mapping F∗ : Y → 2X defined by

F∗(y) = {x ∈ X : F(x, y) ⊂ C(x)}
(resp., F∗(y) = {x ∈ X : F(x, y) �⊂ C(x)}, F∗(y) = {x ∈ X : F(x, y)

⋂
C(x) �= ∅})

is a transfer compactly closed-valued mapping.

Proof Define a set-valued mapping H : Y → 2X by

H(y) = X\F∗(y), ∀ y ∈ Y.

It is enough to show that F(x, y) is a C-transfer compactly continuous mapping of Type
(I) (resp., Types (II) and (III)) in first argument if and only if H is a transfer compactly
open-valued mapping in first argument by Lemma 2.2 of Ding [13]. Suppose that
F(x, y) is a C-transfer compactly continuous mapping of Type (I) (resp., Types (II)
and (III)) in first argument. Then for any compact subset K of X and any x ∈ K, if
x ∈ H(y)∩K, we have {y ∈ Y : F(x, y) �⊂ C(x)} �= ∅ (resp., {y ∈ Y : F(x, y) ⊂ C(x)} �= ∅,
{y ∈ Y : F(x, y) ∩ C(x) = ∅} �= ∅). By definition 4.3, there exist a relatively open
neighborhood N(x) of x in K and a point y′ ∈ Y such that F(z, y′) �⊂ C(z) (resp.,
F(z, y′) ⊂ C(z), F(z, y′) ∩ C(z) = ∅) for all z ∈ N(x). It follows that

N(x) ⊂ intK({z ∈ K : F(z, y′) �⊂ C(z)}) = intK(H(y′) ∩ K)

(resp., N(x) ⊂ intK({z ∈ K : F(z, y′) ⊂ C(z)}) = intK(H(y′) ∩ K),

N(x) ⊂ intK({z ∈ K : F(z, y′) ∩ C(z) = ∅}) = intK(H(y′) ∩ K)).

Hence H is a transfer compactly open-valued mapping. Now suppose that H is a
transfer compactly open-valued mapping. Then, for any compact subset K of X and
any x ∈ K, if {y ∈ Y : F(x, y) �⊂ C(x)} �= ∅ (resp., {y ∈ Y : F(x, y) ⊂ C(x)} �= ∅,
{y ∈ Y : F(x, y) ∩ C(x) = ∅} �= ∅), then there exists y ∈ Y such that x ∈ H(y) ∩ K.
Since H a transfer compactly open-valued mapping, there exists y′ ∈ Y such that
x ∈ intK(H(y′) ∩ K). It follows that there exists a relatively open neighborhood N(x)

of x in K such that N(x) ⊂ intK(H(y′) ∩ K). Hence we have F(z, y′) �⊂ C(z) (resp.,
F(z, y′) ⊂ C(z), F(z, y′) ∩ C(z) = ∅ ) for all z ∈ N(x). This show that F(x, y) is a
C-transfer compactly continuous mapping of Type (I) (resp., Type (II), Type (III)) in
first argument.

Remark 4.4 Proposition 4.4 generalizes Lemma 2.2 of Ding and Park [15].

Proposition 4.5 Let X, Y and Z be topological spaces. Let F : X × Y → 2Z and
C : X → 2Z be set-valued mappings such that
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(1) C has closed (resp., open) graph,
(2) for each y ∈ Y, F(·, y) is lower semicontinuous on each compact subset of X.

Then the mapping F∗ : Y → 2X defined by F∗(y) = {x ∈ X : F(x, y) ⊂ C(x)} (resp.,
F∗(y) = {x ∈ X : F(x, y) ∩ C(x) = ∅}) has compactly closed values.

Proof For any y ∈ Y and any compact subset K of X, if x0 ∈ clK(K ∩ F∗(y)), then
there exists a net {xα} in K ∩ F∗(y) such that xα → x0. Hence we have x0 ∈ K and
F(xα , y) ⊂ C(xα) (resp., F(xα , y) ∩ C(xα) = ∅) for all α. Let z ∈ F(x0, y). By (2) and
Lemma 2.1, there exists a net {zα} ⊂ F(xα , y) such that zα → z. Thus zα ∈ C(xα)

(resp., zα ∈ Z\C(xα) for all α. By (1), we have z ∈ C(x0) ( resp., z ∈ Z\C(x0)). It
follows that F(x0, y) ⊂ C(x0) (resp., F(x0, y) ∩ C(x0) = ∅) and hence x0 ∈ K ∩ F∗(y).
Therefore the mapping F∗ : X → 2Y defined by F∗(y) = {x ∈ X : F(x, y) ⊂ C(x)}
(resp., F∗(y) = {x ∈ X : F(x, y) ∩ C(x) = ∅}) has compactly closed values.

Proposition 4.6 Let X, Y, and Z be topological spaces. Let F : X × Y → 2Z and
C : X → 2Z be set-valued mappings such that

(1) C has open (resp., closed) graph in X × Z,
(2) for each y ∈ Y, F(·, y) is upper semicontinuous on each compact subset of X with

nonempty compactly closed values.

Then the mapping F∗ : Y → 2X defined by F∗(y) = {x ∈ X : F(x, y) �⊂ C(x)} (resp.,
F∗(y) = {x ∈ X : F(x, y) ∩ C(x) �= ∅}) has compactly closed values.

Proof For any y ∈ Y and any compact subset K of X, if x0 ∈ clK(K ∩ F∗(y)), then
there exists a net {xα} in K ∩ F∗(y) such that xα → x0. Hence we have x0 ∈ K and
F(xα , y) �⊂ C(xα) (resp., F(xα , y)∩C(xα) �= ∅) for all α. Hence there exists zα ∈ F(xα , y)

such that zα ∈ Z\C(xα) (resp., zα ∈ C(xα)) for all α. By condition (2) and Propo-
sition 3.1.11 of Aubin ana Ekeland [3], the set

⋃
x∈K F(x, y) is compact in Z. Since

{zα} ⊂ ⋃
x∈K F(x, y), without loss of generality we can assume that zα → z. By the

upper semicontinuity of F(·, y), we have z ∈ F(x0, y). Since C has open (resp., Closed)
graph in X × Z, we have z /∈ C(x0) (resp., z ∈ C(x0)). Hence x0 ∈ K ∩ F∗(y) and so
F∗(y) has compactly closed values.

Remark 4.5 Proposition 4.6 generalizes Lemma 2.3 of Ding and Park [15].

Theorem 4.1 Let (Y, {ϕN}) be a FC-space, X be a topological space and Z be a non-
empty set. Let T ∈ KKM(Y, X), F, G, M : X × Y → 2Z and C : X → 2Z be set-valued
mappings such that

(1) F(x, y) is a C-transfer compactly continuous mapping of Type (I) (resp., Types
(II) and (III)) in first argument,

(2) for each y ∈ Y and x ∈ T(y), M(x, y) ⊂ C(x) (resp., M(x, y) �⊂ C(x), M(x, y) ∩
C(x) �= ∅),

(3) for each (x, y) ∈ X ×Y, F(x, y) ⊂ G(x, y), (resp., G(x, y) �⊂ C(x) implies F(x, y) �⊂
C(x), G(x, y) ∩ C(x) �= ∅ implies F(x, y) ∩ C(x) �= ∅),

(4) G(x, y) is a C-diagonally quasi-convex mapping of Type (I) (resp., Types (II) and
(III)) with respect to the mapping M∗ : Y → 2X defined by M∗(y) = {x ∈ X :
M(x, y) ⊂ C(x)} (resp., M∗(y) = {x ∈ X : M(x, y) �⊂ C(x)}, M∗(y) = {x ∈ X :
M(x, y) ∩ C(x) �= ∅}) in second argument,

(5) for each compact subset D of Y, T(D) is compact in X,
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(6) there exists compact subset K of X such that for each N ∈ 〈Y〉, there exists a
compact FC-subspace LN of Y containing N satisfying

T(LN)
⋂

(
⋂

y∈LN

ccl{x ∈ X : F(x, y) ⊂ C(x)}
)

⊂ K

(resp., T(LN) ∩ (∩y∈LN ccl{x ∈ X : F(x, y) �⊂ C(x)}) ⊂ K,

T(LN)
⋂

(
⋂

y∈LN

ccl{x ∈ X : F(x, y) ∩ C(x) �= ∅}
)

⊂ K).

Then there exists x̂ ∈ X such that

F(x̂, y) ⊂ C(x̂) (resp., F(x̂, y) �⊂ C(x̂), F(x̂, y) ∩ C(x̂) �= ∅), ∀ y ∈ Y,

i.e., x̂ is a solution of the GVEP(I) (resp., GVEP(II), GVEP(III)) .

Proof Define set-valued mappings F∗, G∗, M∗ : Y → 2X by

F∗(y) = {x ∈ X : F(x, y) ⊂ C(x)}
(resp., F∗(y) = {x ∈ X : F(x, y) �⊂ C(x)}, F∗(y) = {x ∈ X : F(x, y) ∩ C(x) �= ∅}),

G∗(y) = {x ∈ X : G(x, y) ⊂ C(x)}
(resp., G∗(y) = {x ∈ X : G(x, y) �⊂ C(x)}, G∗(y) = {x ∈ X : G(x, y) ∩ C(x) �= ∅}), ∀ y ∈ Y.

Then, by (1) and Proposition 4.4, F∗ is transfer compactly closed-valued. By (2) and
(3), we have that for each y ∈ Y, T(y) ⊂ M∗(y), and G∗(y) ⊂ F∗(y). By (4), Propo-
sition 4.1 and Definition 4.1, G∗ is a generalized KKM mapping with respect to M∗.
The conditions (5) and (6) imply that the conditions (4) and (5) of Theorem 3.2 hold.
By Theorem 3.2, ∩y∈YF∗(y) �= ∅. Taking x̂ ∈ ∩y∈YF∗(y), we obtain

F(x̂, y) ⊂ C(x̂) (resp., F(x̂, y) �⊂ C(x̂), F(x̂, y)
⋂

C(x̂) �= ∅), ∀ y ∈ Y.

Corollary 4.1 Let (Y, {ϕN}) be a FC-space, X be a topological space and Z be a non-
empty set. Let T ∈ KKM(Y, X), F : X × Y → 2Z and C : X → 2Z be set-valued
mappings such that

(1) F(x, y) is a C-transfer compactly continuous mapping of Type (I) (resp., Types
(II) and (III)) in first argument,

(2) for each y ∈ Y and x ∈ T(y), F(x, y) ⊂ C(x) (resp., F(x, y) �⊂ C(x), F(x, y) ∩
C(x) �= ∅ ),

(3) F(x, y) is a C-diagonally quasi-convex mapping of Type (I) (resp., Types (II) and
Type (III)) with respect to the mapping T in second argument,

(4) for each compact subset D of Y, T(D) is compact in X,
(5) there exists compact subset K of X such that for each N ∈ 〈Y〉, there exists a

compact FC-subspace LN of Y containing N satisfying

T(LN)
⋂

(
⋂

y∈LN

ccl{x ∈ X : F(x, y) ⊂ C(x)}
)

⊂ K

(resp., T(LN)
⋂

(
⋂

y∈LN

ccl{x ∈ X : F(x, y) �⊂ C(x)}
)

⊂ K,

T(LN) ∩ (∩y∈LN ccl{x ∈ X : F(x, y) ∩ C(x) �= ∅}) ⊂ K).
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Then there exists x̂ ∈ X such that

F(x̂, y) ⊂ C(x̂) (resp., F(x̂, y) �⊂ C(x̂), F(x̂, y)
⋂

C(x̂) �= ∅), ∀ y ∈ Y,

i.e., x̂ is a solution of the GVEP(I) (resp., GVEP(II), GVEP(III)) .

Proof The conclusion of Corollary 4.1 holds from Theorem 4.1 with F = G = M.

Corollary 4.2 Let (Y, {ϕN}) be a FC-space, X and Z be topological spaces. Let T ∈
KKM(Y, X), F : X × Y → 2Z and C : X → 2Z be set-valued mappings such that

(1) for each y ∈ Y, F(·, y) is lower semicontinuous in each compact subset of X and
C has closed graph,

(2) for each y ∈ Y and x ∈ T(y), F(x, y) ⊂ C(x),
(3) F(x, y) is a C-diagonally quasi-convex mapping of Type (I) with respect to the

mapping T in second argument,
(4) for each compact subset D of Y, T(D) is compact in X,
(5) there exists compact subset K of X such that for each N ∈ 〈Y〉, there exists a

compact FC-subspace LN of Y containing N satisfying

T(LN)
⋂

⎛

⎝
⋂

y∈LN

ccl{x ∈ X : F(x, y) ⊂ C(x)}
⎞

⎠ ⊂ K.

Then there exists x̂ ∈ X such that

F(x̂, y) ⊂ C(x̂) ∀ y ∈ Y,

i.e., x̂ is a solution of the GVEP(I).

Proof Define a set-valued mapping F∗ : Y → 2X by F∗(y) = {x ∈ X : F(x, y) ⊂ C(x)}
for each y ∈ Y. Then, by (1) and Proposition 4.5, F∗ has compactly closed values
and hence F∗ is a transfer compactly closed-valued mapping. By Proposition 4.4,
F(x, y) is a C-transfer compactly continuous mapping of Type (I) in first argument.
The condition (1) of Corollary 4.1 is satisfied. The conclusion of Corollary 4.2 hold
from Corollary 4.1.

As a consequence of Corollary 4.2 with X = Y and T being the identity mapping,
we have the following result.

Corollary 4.3 Let (X, {ϕN}) be a FC-space, and Z be a topological space. Let F :
X × X → 2Z and C : X → 2Z be set-valued mappings such that

(1) for each y ∈ X, F(·, y) is lower semicontinuous in each compact subset of X and
C has closed graph,

(2) F(x, y) is a C-diagonally quasi-convex mapping of Type (I) in second argument,
(3) there exists compact subset K of X such that for each N ∈< X >, there exists a

compact FC-subspace LN of X containing N satisfying

LN \K ⊂
⋃

y∈LN

cint{x ∈ X : F(x, y) ⊂ C(x)}.

Then there exists x̂ ∈ X such that

F(x̂, y) ⊂ C(x̂) ∀ y ∈ X.
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Corollary 4.4 Let (Y, {ϕN}) be a FC-space, X and Z be topological spaces. Let T ∈
KKM(Y, X), F : X × Y → 2Z and C : X → 2Z be set-valued mappings such that

(1) for each y ∈ Y, F(·, y) is upper semicontinuous in each compact subset of X with
nonempty compact values and C has open (resp., closed) graph in X × Z,

(2) for each y ∈ Y and x ∈ T(y), F(x, y) �⊂ C(x), (resp., F(x, y) ∩ C(x) �= ∅),
(3) F(x, y) is a C-diagonally quasi-convex mapping of Type (II) (resp., Type (III))

with respect to the mapping T in second argument,
(4) for each compact subset D of Y, T(D) is compact in X,
(5) there exists compact subset K of X such that for each N ∈ 〈Y〉, there exists a

compact FC-subspace LN of Y containing N satisfying

T(LN)
⋂

(
⋂

y∈LN

ccl{x ∈ X : F(x, y) �⊂ C(x)}
)

⊂ K

(resp., T(LN)
⋂

(
⋂

y∈LN

ccl{x ∈ X : F(x, y) ∩ C(x) �= ∅}
)

⊂ K).

Then there exists x̂ ∈ X such that

F(x̂, y) �⊂ C(x̂) (resp., F(x̂, y)
⋂

C(x̂) �= ∅), ∀ y ∈ Y,

i.e., x̂ is a solution of the GVEP(II) (resp. GVEP(III)) .

Proof Define a set-valued mapping F∗ : Y → 2X by F∗(y) = {x ∈ X : F(x, y) �⊂ C(x)}
(resp., F∗(y) = {x ∈ X : F(x, y) ∩ C(x) �= ∅}) for each y ∈ Y. Then, by (1) and Prop-
osition 4.6, F∗ has compactly closed values and hence F∗ is a transfer compactly
closed-valued mapping. By Proposition 4.4, F(x, y) is a C-transfer compactly contin-
uous mapping of Type (II) (resp., Type (III)) in first argument. The condition (i) of
Corollary 4.1 is satisfied. The conclusion of Corollary 4.3 hold from Corollary 4.1.

As a consequence of Corollary 4.4 with X = Y and T being the identity mapping,
we have the following result.

Corollary 4.5 Let (X, {ϕN}) be a FC-space, and Z be a topological space. Let F :
X × X → 2Z and C : X → 2Z be set-valued mappings such that

(1) for each y ∈ X, F(·, y) is upper semicontinuous in each compact subset of X with
nonempty compact values and C has open (resp., closed) graph in X × Z,

(2) F(x, y) is a C-diagonally quasi-convex mapping of Type (II) (resp., Type (III)) in
second argument,

(3) there exists compact subset K of X such that for each N ∈< X >, there exists a
compact FC-subspace LN of X containing N satisfying

LN \K ⊂ ⋃
y∈LN

cint{x ∈ X : F(x, y) �⊂ C(x)}
(resp., LN)\K ⊂ ⋃

y∈LN
cint{x ∈ X : F(x, y) ∩ C(x) �= ∅}).

Then there exists x̂ ∈ X such that

F(x̂, y) �⊂ C(x̂) (resp., F(x̂, y)
⋂

C(x̂) �= ∅), ∀ y ∈ X.

Remark 4.6 Theorem 4.1 and Corollaries 4.1–4.5 improves and generalizes Theo-
rems 4.1–4.4, 4.6, 4.9 and 4.10 of Lin and Chen [22] from topological vector spaces to
FC-spaces without any convexity structure under much weak assumptions.
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Corollary 4.6 Let (Y, {ϕN}) be a FC-space, X be a topological space and Z be a non-
empty set. Let T ∈ KKM(Y, X) be a compact mapping, F : X×Y → 2Z and C : X → 2Z

be set-valued mappings such that

(1) F(x, y) is a C-transfer compactly continuous mapping of Type (I) (resp., Types
(II) and Type (III)) in frist argument,

(2) for each y ∈ Y and x ∈ T(y), F(x, y) ⊂ C(x) (resp., F(x, y) �⊂ C(x), F(x, y) ∩
C(x) �= ∅ ),

(3) F(x, y) is a C-diagonally quasi-convex mapping with respect to T in second argu-
ment, Then there exists x̂ ∈ X such that

F(x̂, y) ⊂ C(x̂) (resp., F(x̂, y) �⊂ C(x̂), F(x̂, y) ∩ C(x̂) �= ∅), ∀ y ∈ Y,

i.e., x̂ is a solution of the GVEP(I) (resp., GVEP(II), GVEP(III)) .

Proof Since T is a compact mapping, T(Y) is compact in X. The conditions (4) and
(5) of Corollary 4.1 are satisfied trivially. The conclusion of Corollary 4.6 holds from
Corollary 4.1.

Theorem 4.2 Let (Y, {ϕN}) be a FC-space, X be a topological space and Z be a non-
empty set. Let T ∈ KKM(Y, X), F, G, M : X × Y → 2Z and C : X → 2Z be set-valued
mappings such that

(1) F(x, y) is a C-transfer compactly continuous mapping of Type (I) (resp., Types
(II) and Type (III)) in first argument,

(2) for each y ∈ Y and x ∈ T(y), M(x, y) ⊂ C(x) (resp., M(x, y) �⊂ C(x), M(x, y) ∩
C(x) �= ∅),

(3) for each (x, y) ∈ X ×Y, F(x, y) ⊂ G(x, y), (resp., G(x, y) �⊂ C(x) implies F(x, y) �⊂
C(x), G(x, y) ∩ C(x) �= ∅ implies F(x, y) ∩ C(x) �= ∅),

(4) for each x ∈ X, {y ∈ Y : M(x, y) �⊂ C(x)} (resp., {y ∈ Y : M(x, y) ⊂ C(x)}, {y ∈ Y :
M(x, y) ∩ C(x) = ∅}) is a FC-subspace of Y relative to {y ∈ Y : G(x, y) �⊂ C(x)}
(resp., {y ∈ Y : G(x, y) ⊂ C(x)}, {y ∈ Y : G(x, y) ∩ C(x) = ∅}),

(5) for each compact subset D of Y, T(D) is compact in X,
(6) there exists compact subset K of X such that for each N ∈ 〈Y〉, there exists a

compact FC-subspace LN of Y containing N satisfying

T(LN)
⋂

(
⋂

y∈LN

ccl{x ∈ X : F(x, y) ⊂ C(x)}
)

⊂ K

(resp., T(LN)
⋂

(
⋂

y∈LN

ccl{x ∈ X : F(x, y) �⊂ C(x)}
)

⊂ K,

T(LN)
⋂

(
⋂

y∈LN

ccl{x ∈ X : F(x, y) ∩ C(x) �= ∅}
)

⊂ K).

Then there exists x̂ ∈ X such that

F(x̂, y) ⊂ C(x̂) (resp., F(x̂, y) �⊂ C(x̂), F(x̂, y)
⋂

C(x̂) �= ∅), ∀ y ∈ Y,

i.e., x̂ is a solution of the GVEP(I) (resp., GVEP(II), GVEP(III)) .
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Proof Define set-valued mappings F∗, G∗, M∗ : Y → 2X by

F∗(y) = {x ∈ X : F(x, y) ⊂ C(x)}
(resp., F∗(y) = {x ∈ X : F(x, y) �⊂ C(x)}, F∗(y) = {x ∈ X : F(x, y) ∩ C(x) �= ∅}),

G∗(y) = {x ∈ X : G(x, y) ⊂ C(x)}
(resp., G∗(y) = {x ∈ X : G(x, y) �⊂ C(x)}, G∗(y) = {x ∈ X : G(x, y) ∩ C(x) �= ∅}), and

M∗(y) = {x ∈ X : M(x, y) ⊂ C(x)}
(resp., M∗(y) = {x ∈ X : M(x, y) �⊂ C(x)}, M∗(y) = {x ∈ X : M(x, y) ∩ C(x) �= ∅}), ∀ y ∈ Y.

By the conditions (1)–(3), (5),(6) and using same argument as in the proof of The-
orem 4.1, the conditions (1),(2), (4) and (5) of Theorem 3.2 are satisfied. Note that
for each x ∈ X, Y \(M∗)−1(x) = {y ∈ Y : M(x, y) �⊂ C(x)} (resp., Y \(M∗)−1(x) =
{y ∈ Y : M(x, y) ⊂ C(x)}, Y \ (M∗)−1(x) = {y ∈ Y : M(x, y) ∩ C(x) = ∅}) and
Y \(G∗)−1(x) = {y ∈ Y : G(x, y) �⊂ C(x)} (resp., Y \(G∗)−1(x) = {y ∈ Y : G(x, y) ⊂
C(x)}, Y \(G∗)−1(x) = {y ∈ Y : G(x, y) ∩ C(x) = ∅}). By (4), Proposition 4.2 and
Definition 4.1, G∗ is a generalized KKM mapping with respect to M∗. the condition (3)
of Theorem 3.2 is satisfied. By Theorem 3.2, ∩y∈YF∗(y) �= ∅. Taking x̂ ∈ ∩y∈YF∗(y),
we obtain

F(x̂, y) ⊂ C(x̂) (resp., F(x̂, y) �⊂ C(x̂), F(x̂, y) ∩ C(x̂) �= ∅), ∀ y ∈ Y.

As consequence of Theorem 4.2, we have the following results.

Corollary 4.7 Let (Y, {ϕN}) be a FC-space, X be a topological space and Z be a non-
empty set. Let T ∈ KKM(Y, X), F : X × Y → 2Z and C : X → 2Z be set-valued
mappings such that

(1) F(x, y) is a C-transfer compactly continuous mapping of Type (I) (resp., Types
(II) and (III)) in first argument,

(2) for each y ∈ Y and x ∈ T(y), F(x, y) ⊂ C(x) (resp., F(x, y) �⊂ C(x), F(x, y) ∩
C(x) �= ∅ ),

(3) for each x ∈ X, {y ∈ Y : F(x, y) �⊂ C(x)} (resp., {y ∈ Y : F(x, y) ⊂ C(x)},
{y ∈ Y : F(x, y) ∩ (x) = ∅}) is a FC-subspace of Y,

(4) for each compact subset D of Y, T(D) is compact in X,
(5) there exists compact subset K of X such that for each N ∈ 〈Y〉, there exists a

compact FC-subspace LN of Y containing N satisfying

T(LN)
⋂

(
⋂

y∈LN

ccl{x ∈ X : F(x, y) ⊂ C(x)}
)

⊂ K

(resp., T(LN)
⋂

(
⋂

y∈LN

ccl{x ∈ X : F(x, y) �⊂ C(x)}
)

⊂ K,

T(LN)
⋂

(
⋂

y∈LN

ccl{x ∈ X : F(x, y) ∩ C(x) �= ∅}
)

⊂ K).

Then there exists x̂ ∈ X such that

F(x̂, y) ⊂ C(x̂) (resp., F(x̂, y) �⊂ C(x̂), F(x̂, y) ∩ C(x̂) �= ∅), ∀ y ∈ Y,

i.e., x̂ is a solution of the GVEP(I) (resp., GVEP(II), GVEP(III)) .
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Corollary 4.8 Let (Y, {ϕN}) be a FC-space, X be a topological space and Z be a non-
empty set. Let T ∈ KKM(Y, X) be a compact mapping, F : X×Y → 2Z and C : X → 2Z

be set-valued mappings such that

(1) F(x, y) is a C-transfer compactly continuous mapping of Type (I) (resp., Types
(II) and (III)) in first argument,

(2) for each y ∈ Y and x ∈ T(y), F(x, y) ⊂ C(x) (resp., F(x, y) �⊂ C(x), F(x, y) ∩
C(x) �= ∅),

(3) for each x ∈ X, {y ∈ Y : F(x, y) �⊂ C(x)} (resp., {y ∈ Y : F(x, y) ⊂ C(x)},
{y ∈ Y : F(x, y) ∩ C(x) = ∅}) is a FC-subspace of Y, Then there exists x̂ ∈ X such
that

F(x̂, y) ⊂ C(x̂) (resp., F(x̂, y) �⊂ C(x̂), F(x̂, y) ∩ C(x̂) �= ∅), ∀ y ∈ Y,

i.e., x̂ is a solution of the GVEP(I) (resp., GVEP(II), GVEP(III)) .

Theorem 4.3 Let (Y, {ϕN}) be a FC-space, X and Z be topological spaces. Let T ∈
KKM(Y, X), F, G, M : X × Y → 2Z and C : X → 2Z be set-valued mappings such that

(1) for each y ∈ Y, F(·, y) is lower semicontinuous in each compact subset of X and
C has closed graph,

(2) for each y ∈ Y and x ∈ T(y), M(x, y) ⊂ C(x) (resp., M(x, y) ∩ C(x) �= ∅),
(3) for all (x, y) ∈ X × Y, F(x, y) ⊂ G(x, y) implies F(x, y) ∩ C(x) �= ∅),
(4) for all x ∈ X, {y ∈ Y : M(x, y) �⊂ C(x)} is a FC-subspace of Y relative to

{y ∈ Y : G(x, y) �⊂ C(x)},
(5) for each compact subset D of Y, T(D) is compact in X,
(6) there exists compact subset K of X such that for each N ∈ 〈Y〉, there exists a

compact FC-subspace LN of Y containing N satisfying

T(LN)
⋂

⎛

⎝
⋂

y∈LN

ccl{x ∈ X : F(x, y) ⊂ C(x)}
⎞

⎠ ⊂ K

such that

F(x̂, y) ⊂ C(x̂) ∀ y ∈ Y,

i.e., x̂ is a solution of the GVEP(I).

Proof Define a set-valued mapping F∗ : Y → 2X by F∗(y) = {x ∈ X : F(x, y) ⊂ C(x)}
for each y ∈ Y. Then, by (1) and Proposition 4.5, F∗ has compactly closed values and
hence F∗ is a transfer compactly closed-valued mapping. By Proposition 4.4, F(x, y)

is a C-transfer compactly continuous mapping of Type (I) in first argument. The con-
dition (1) of Theorem 4.2 is satisfied. Therefore the conclusion of Theorem 4.3 holds
from Theorem 4.2.

As consequence of Theorem 4.2, we have the following results.

Corollary 4.9 Let (Y, {ϕN}) be a FC-space, X and Z be topological spaces. Let T ∈
KKM(Y, X), F : X × Y → 2Z and C : X → 2Z be set-valued mappings such that

(1) for each y ∈ Y, F(·, y) is lower semicontinuous in each compact subset of X and
C has closed graph,

(2) for each y ∈ Y and x ∈ T(y), F(x, y) ⊂ C(x),
(3) for each x ∈ X, {y ∈ Y : F(x, y) �⊂ C(x)} is a FC-subspace of Y,



J Glob Optim (2007) 38:367–385 383

(4) for each compact subset D of Y, T(D) is compact in X,
(5) there exists compact subset K of X such that for each N ∈ 〈Y〉, there exists a

compact FC-subspace LN of Y containing N satisfying

T(LN) ∩ (∩y∈LN ccl{x ∈ X : F(x, y) ⊂ C(x)}) ⊂ K.

Then there exists x̂ ∈ X such that

F(x̂, y) ⊂ C(x̂) ∀ y ∈ Y,

i.e., x̂ is a solution of the GVEP(I).

Remark 4.7 Theorem 4.3 and Corollary 4.9 generalizes Theorems 4.1, 4.3 of Lin
and Chen [22] from topological vector spaces to FC-spaces without any convexity
structure.

Corollary 4.10 In Corollary 4.9, if T ∈ KKM(Y, X) is replaced by that T being an
upper semicontinuous set-valued mapping with nonempty compact acyclic values and
assume that the conditions (1)–(3) and (5) hold.
Then there exists x̂ ∈ X such that

F(x̂, y) ⊂ C(x̂) (resp., F(x̂, y)
⋂

C(x̂) �= ∅), ∀ y ∈ Y,

i.e., x̂ is a solution of the GVEP(I) (resp. GVEP(III)) .

Proof Since T is upper semicontinuous with nonempty compact acyclic values, T ∈
V(Y, X) ⊂ KKM(Y, X). By Proposition 3.1.11 of Aubin and Ekeland [2], for any
compact subset D of Y, T(D) = T(D) is compact in X. Hence the conclusion of
Corollary 4.10 holds from Corollary 4.9.

Remark 4.8 Corollary 4.10 improves and generalizes Corollary 4.1 of Lin and Chen
[22] to FC-spaces under weaker assumptions.

Theorem 4.4 Let (Y, {ϕN}) be a FC-space, X and Z be topological spaces. Let T ∈
KKM(Y, X), F, G, M : X × Y → 2Z and C : X → 2Z be set-valued mappings such that

(1) for each y ∈ Y, F(·, y) is upper semicontinuous in each compact subset of X with
nonempty compact values and C has open (resp., closed) graph in X × Z,

(2) for each y ∈ Y and x ∈ T(y), M(x, y) �⊂ C(x) (resp., M(x, y) ∩
C(x) �= ∅),

(3) for each (x, y) ∈ X × Y, G(x, y) �⊂ C(x) implies F(x, y) �⊂ C(x), (resp., G(x, y) ∩
C(x) �= ∅ implies F(x, y) ∩ C(x) �= ∅),

(4) for each x ∈ X, {y ∈ Y : M(x, y) ⊂ C(x)} (resp., {y ∈ Y : M(x, y) ∩ C(x) = ∅})
is a FC-subspace of Y relative to {y ∈ Y : G(x, y) ⊂ C(x)} (resp., {y ∈ Y :
G(x, y) ∩ C(x) = ∅}),

(5) for each compact subset D of Y, T(D) is compact in X,
(6) there exists compact subset K of X such that for each N ∈ 〈Y〉, there exists a

compact FC-subspace LN of Y containing N satisfying

T(LN)
⋂

(
⋂

y∈LN

ccl{x ∈ X : F(x, y) �⊂ C(x)}
)

⊂ K

(resp., T(LN)
⋂

(
⋂

y∈LN

ccl{x ∈ X : F(x, y) ∩ C(x) �= ∅}
)

⊂ K).
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Then there exists x̂ ∈ X such that

F(x̂, y) �⊂ C(x̂) (resp., F(x̂, y)
⋂

C(x̂) �= ∅), ∀ y ∈ Y,

i.e., x̂ is a solution of the GVEP(II) (resp. GVEP(III)) .

Proof Define a set-valued mapping F∗ : Y → 2X by F∗(y) = {x ∈ X : F(x, y) �⊂ C(x)}
(resp., F∗(y) = {x ∈ X : F(x, y) ∩ C(x) �= ∅}) for each y ∈ Y. Then, by (1) and
Proposition 4.6, F∗ has compactly closed values and hence F∗ is a transfer compactly
closed-valued mapping. By Proposition 4.4, F(x, y) is a C-transfer compactly contin-
uous mapping of Type (II) (resp., Type (III)) in first argument. The condition (2) of
Theorem 4.2 is satisfied. Therefore the conclusion of Theorem 4.4 holds from Theorem
4.2.

Corollary 4.11 Let (Y, {ϕN}) be a FC-space, X and Z be topological spaces. Let T ∈
KKM(Y, X), F : X × Y → 2Z and C : X → 2Z be set-valued mappings such that

(1) for each y ∈ Y, F(·, y) is upper semicontinuous in each compact subset of X with
nonempty compact values and C has open (resp., closed) graph in X × Z,

(2) for each y ∈ Y and x ∈ T(y), F(x, y) �⊂ C(x) (resp., F(x, y) ∩ C(x) �= ∅),
(3) for each x ∈ X, {y ∈ Y : F(x, y) ⊂ C(x)} (resp., {y ∈ Y : F(x, y) ∩ C(x) = ∅}) is a

FC-subspace of Y,
(4) for each compact subset D of Y, T(D) is compact in X,
(5) there exists compact subset K of X such that for each N ∈ 〈Y〉, there exists a

compact FC-subspace LN of Y containing N satisfying

T(LN)
⋂

(
⋂

y∈LN

ccl{x ∈ X : F(x, y) �⊂ C(x)}
)

⊂ K

(resp., T(LN)
⋂

(
⋂

y∈LN

ccl{x ∈ X : F(x, y) ∩ C(x) �= ∅}
)

⊂ K).

Then there exists x̂ ∈ X such that

F(x̂, y) �⊂ C(x̂) (resp., F(x̂, y)
⋂

C(x̂) �= ∅), ∀ y ∈ Y,

i.e., x̂ is a solution of the GVEP(II) (resp. GVEP(III)) .

Proof The conclusion of Corollary 4.11 from Theorem 4.4 with F = M = G.

Remark 4.9 Theorem 4.4 and Corollary 11 improve and generalize Theorems 4.5, 4.7,
and 4.8 of Lin and Chen [22] from topological vector spaces to FC-spaces without any
convexity structure under much weak assumptions.
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